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Introduction

The main purpose of this study was to investigate the
primary factors which influence visual acuity (VA) with night
vision goggles (NVGs). These factors are: night sky condition,
target contrast, and NVG generation. Secondary factors, such as
target motion (Bloom and Zwick, 1981), self motion (Ohlbaum,
O'Briant, and von Gierke, 1971), visual noise (Riegler et al.,
1991), windscreen absorption (Decker, 1988), and artificial
lighting (Pollehn, 1988; Stefanik, 1989) uere excluded.

VA with second generation NVGs already has been thoroughly
scrutinized. Three studies have examined VA with these devices
across a wide range of night sky conditions and target contrasts
(Levine and Rash, 1989a and 1989b; Wiley, 1989). Other studies
with second generation NVGs have analyzed how VA is influenced by
exogenous and endogenous factors. The exogenous factors included
wearing nuclear flashblindness protection (Levine and Rash, 1989a
and 1989b) and wearing chemical protective masks (Miller et al.,
1989). The endogenous factors were astigmatism (Kim, 1982) and
eye disease (Berson, Rabin, and Mehaffey, 1973; Hoover, 1983).
In addition, VA has been evaluated under actual night sky
conditions with second generation devices (Miller et al., 1984).

Less is known about VA with third generation NVGs. The
effects of signal-to-noise ratio (Riegler et al., 1991) and the
influence of wearing protective masks (Miller et al., 1989;
Donohue-Perry, Riegler, and Hausman, 1990) have been explored
with these devices. In addition, Miller et al., (1984) have
investigated VA with third generation NVGs under actual night sky
conditions in the field. Studies of VA with third generation
NVGs have been limited to a narrower range of night sky
conditions and target contrasts than similar studies with second
generation devices.

Studies of VA with either generation of NVGs have had to
cope with the problem of providing adequate night sky conditions.
This problem is not trivial, even in the field. The vagaries of
weather, technical difficulties with measuring night sky
emissions (Stefanik, 1989), and the inability to find sites where
there is no contamination by artificial light (Pollehn, 1988;
Stefanik, 1989) are significant hindrances in field studies. In
the laboratory, the main hurdles are selecting representative
night sky spectra and duplicating them faithfully.
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The problem of choosing representative spectra exists
because there is no standard night sky spectral distribution.
The latter requires measurements of night sky radiation that are
not only valid, but which are varied with respect to lunar,
geographical, and meteorological conditions. The most recent
night sky field survey of suitable scope was by Vatsia, Stich,
and Dunlap (1972). However, Vatsia's results may underestimate
the amount of irradiance in the long wavelength visible and short
wavelength infrared regions of the spectrum (Stefanik, 1991).

Reproducing spectral distributions in the laboratory may be
less a problem of technology than of knowing what degree of
simulation is necessary. Present technology allows for two
levels of approximation of night sky radiation. The first level,
which we call "first order," refers to simulations in which a
standard laboratory light source is attenuated by a spectrally
flat filter (in some cases, the filter may not be flat outside of
the visible region). First order simulations match the overall
level of radiation present in various night sky conditions (at
least as determined by photometric sensors), but neglect its
distribution by wavelength. We use the term "second order" to
refer to simulations which match not only the overall level of
night sky radiation, but also its spectral distribution. Second
order simulations are achieved through the use of combinations of
spectrally flat and wavelength selective filters, which are
effective over the entire NVG response range.

Historically, cathode ray tubes (CRTs) or incandescent lamps
have been used with neutral density filters to produce first
order simulations. However, many CRTs fail to give off long
wavelength visible and short wavelength infrared radiation
(Optical characteristics of cathode ray tube screens, 1975).
Wiley (1989) has demonstrated that the output of the P4 CRT
phosphor lies mostly outside the sensitivity range of third
generation NVGs (±'igure 1).

Incandescent sources, on the other hand, are less
susceptible to mismatches between their output and NVG
sensitivity. This is because the spectrum of a tungsten filament
is more or less fully contained within the response range of
either NVG generation. However, tungsten sources lack the short
wavelength visible radiation (RCA handbook, 1974) that is present
in moonlight (Vatsia, Stich, and Dunlap, 1972).

The present experiment marks the first use of a second order
night sky simulation in vision research with NVGs. We employed
an off-the-shelf commercial night sky projector, which was
manufactured by Hoffman Engineering Corporation*. The Hoffman

* See list of manufacturers.
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Figure 1. Comparison of generation III sensitivity to P4
phosphor spectral output.

device incorporates spectral data collected by Vatsia. The use
of the Hoffman projector allowed us not only to study the primary
factors which influence VA with NVGs, but also to learn whether
second order simulations produce results that match those
obtained under actual night sky conditions and with first order
simulations.

Methods

Subjects. Twenty adult volunteers, who had VAs correctable to
20/20 in each eye, served as subjects. Ametropic subjects wore
their spectaclas during the experiment. The subjects ranged in1
age from 22 to 58. Sturr, Kline, and Taub (1990) have shown
that, within this age range, VA does not vary significantly with
age at the limirance levels used in this study (Table 1). The
mean agi wa.s 30+9 years, while the medium was 28.

Experimenital JejgLUl. The only dependent variable, VA, was
studied across four night sky conditions, three target contrasts,
and two NVG generations. Although much is already known about
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Table 1.

Photometrically measured display luminance.

Display luminance (fL)
Night

sky Second generation Third generation
condition

Letter Background Letter Background

Full moon 0.40 0.77 1.02 1.54

Quarter moon 0.20 0.40 1.03 1.64

Starlight 0.11 0.28 0.60 0.98

Overcast 0.08 0.16 0.42 0.68

the influence of night sky condition and contrast on VA with
second generation NVGs, their inclusion in this study was
mandated by our desire to explore generation-specific
interactions with the other independent variables. Altogether,
480 thresholds were measured (20 subjects X 24 thresholds/
subject). Stimulus presentation was counterbalanced for contrast
and generation. However, for a given combination of contrast and
generation, the night sky conditions were presented serially from
worst to best to control for the effects of memorization. This
was necessary because only 5 distinct charts were available to
measure the 24 thresholds/subject.

Visual acuity. VA letter charts, based on the design principles
of Bailey and Lovie, were used (Bailey and Lovie, 1976). The
Bailey-Lovie design principles are: (1) the test task should be
the same for each size level, and (2) the letter sizes should
change according to a logarithmic progression. Design principle
(1) results in size being the only significant variable from row
to row. This is achieved by using: (1) letters of equal
legibility, (2) the same number of letters in each row, and (3)
uniform between-letter and between-row spacing. The logarithmic
progression is achieved by varying the size of successive rows by
0.1 log units. The use of charts following the Bailey-Lovie
design principles allowed us to: (1) analyze our data with
parametric statistics (Lovie-Kitchin, 1988), and (2) change test
distances without inadvertently changing scale intervals (Ferris
et al., 1982). Parametric statistics require either an interval
or ratio scale, while Snellen-like charts provide only an ordinal
scale (Wild and Hussey, 1985). Snellen-like charts have
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irregular progressions of letter size, which cause the scale to
change with changes in viewing distance (Bailey and Lovie, 1976).
In addition, charts of the Bailey-Lovie design have a scale that
is 5 times finer than, and test-retest 95 percent confidence
limits half as big as Snellen-like charts (Bailey et al., 1991).

Night sky conditions. A commercial device was used to simulate
the night sky (Hoffman Engineering Corporation model LM-33-41 NVG
night sky projector) (Figure 2). This projector was equipped
with four quartz halogen lamps and various combinations of
neutral density and blue glass filters. A separate lamp was used
to simulate each of the following conditions: full moon, quarter
moon, clear starlight, and overcast starlight.

The projector was positioned so that its beam was normal to
the VA chart plane. The distance between the projector and the
chart plane coincided with the projector's focal length of 20 ft.
We calibrated the projector using a radiometer designed for night
sky irradiance levels (Hoffman Engineering Corporation model TSP-
90-A radiometer*) (Figure 3). Table 2 shows to what extent we
modified the current to each lamp to achieve the desired
irradiance. Current modifications of this magnitude do not lead
to unintended changes in spectral distribution (McCarter, 1990).
Table 3 gives the measured irradiance values of the night sky
projector, as well as radiance and luminance values provided by
the projector's manufacturer. The irradiance values are similar
to those reported for the night sky by other sources (RCA
handbook, 1974; Stefanik, 1989). The radiance values came from
the field measurements of Vatsia, Stich, and Dunlap (1972), upon
which our simulations were based. Figures 4 and 5 depict the
spectral distributions of the irradiance and radiance,
respectively, for each night sky condition.

Contrast. High, medium, and low contrast stimuli were generated
by charts* described by Bailey and Lovie (1976), Bailey (1982),
and Regan and Neima (1983), respectively. Each of these charts
followed the design principles of Bailey and Lovie (1976). The
high and medium contrast charts had a range of thresholds
extending from 20/12 to 20/250 at 10 feet, and from 20/25 to
20/500 at 5 feet. Thresholds with the low contrast chart
extended from 20/10 to 20/100 at 10 feet, and from 20/20 to
20/200 at 5 feet. The high and medium contrast charts were
available in two versions each. For a fixed contrast level, the
two versions differed only in letter sequence. Only one version
of the low contrast chart was available.

9
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Figure 2. Night sky projector.

Figure 3. Radiometer used to calibrate the night sky projector.
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Table 2.

Night sky projector calibration data.

Night Design Actual Change in
sky current current current

condition (A) (A) (%)

Full moon 2.185 2.186 0.05

Quarter moon 1.712 1.718 0.35

Starlight 1.543 1.530 0.84

Overcast 1.556 1.603 4.70

Table 3.

Night sky radiometric and photometric data.

Night Irradiance Radiance Luminance
sky (W/cm 2) (W cm-2 ster-') (cd/M2 )

condition

Full moon 1.128 X 10-6 3.20 X 10-9 1.006 X 10"?

Quarter moon 2.080 X 10-9 5.90 X 10-10 1.377 X 10-3

Starlight 5.852 X 10-10 1.66 X 10-11 2.393 X 10-1

Overcast 5.852 X 10-11 1.66 X 10-11 2.393 X i0--

E1
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Because the contrast of an object frequently varies between
NVG generations (Decker, 1988; Pollehn, 1988) as a result of
spectral sensitivity ditferences between detectors (Figure 6), we
adapted a technique from Stefanik (1989) which controls for
unwanted between-generation differences in NVG response. This
technique weights the radiant flux falling on a detector by the

1I .2 --- Human photopic (not to scale) 1.2
.. Generation II - Generation Ill

> • 1.0 1.0
".5

r n 0.8 0.8
U) 0

CL0.6 0.6

0.4- -4 0.4

S0.2 .. 0.2

0.0 -0.0

350 450 550 650 750 850 950

Wavelength (nm)
Figure 6. Comparison of spectral sensitivity between humans and

night vision goggles.

spectral sensitivity of that detector. To do so, we measured the
spectral radiance N(A), in which A represents wavelength, of
three charts (one from each contrast level) under each of the
four night sky conditions. We derived the term N(6), which
represents the weighted spectral radiance of detector 6, by
multiplying N(1) by the detector's spectral response function
R(A,6), and integrating the product over the detector's
sensitivity range.

N(O) = fR x1, 8) N.) dA
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The spectral response function R(A,6) is plotted for each NVG
generation and for the human visual system in Figure 6. For the
human observer, the spectral response function is the photopic
luminous efficiency function V(A), and the weighted spectral
radiance N(S) (when multiplied by a constant k) is equivalent to
the photometric quantity luminance L.

N(6) k = L = kf V(1) N(X) dA

Contrast C was calculated separately for each sensor from its
respective weighted radiance N(6) using the following equation,

C = N(8) x- N( 8 )NIN X 100N ( 8)MAX + N(a )JzX

in which the maximum and minimum values of the weighted radiance
correspond to the background and letters respectively. A similar
definition of contrast has been used in other NVG studies (Levine
and Rash, 1969a and 1989b; Wiley, 1989; Riegler et al., 1991).
Tables 4-6 give, for their respective sensors, contrast values
for each chart as a function of night sky condition (missing
values are due to radiometer noise at low radiance levels).
Contrast was constant across the night sky condition, which is
not surprising because contrast depends only on the difference
between letter and background weighted radiance and not on mean
weighted radiance. On the other hand, it is somewhat surprising

Table 4.

Second generation target contrasts.

Night Contrast (%)
sky

condition High Medium Low

Full moon 98 10 5

Quarter moon 97 14 7

Clear starlight - 12 6

Mean 98 12 6

14



Table 5.

Third generation target contrasts.

Night Contrast (percent)
s k y ... ...... .... ...

Condition High Medium Low

Full moon 98 12 7

Quarter moon 97 12 7

Clear starlight - 13 6

Mean 98 12 7

Table 6.

Human observer target contrasts.

Night Contrast (percent)
sky

condition High Medium Low

Full moon 98 10 5

Quarter moon 97 11 7

Clear starlight - 12 6

Mean 98 11 6

that contrast varied little among the three sensors. This
suggests that for the VA charts used in our experiments, both the
letters and the background had similar reflectivities across the
range of wavelengths used. Contrast also was measured with a
hand-held spot photometer under photopic conditions using an
incandescent light source, which yielded values of 96, 11, and 4
percent for the high, medium, and low contrast charts,
respectively. These are in close agreement with the values
calculated from radiance measurements under night sky conditions
(Table 6). Values of 11-12 percent were selected to represent
medium contrast because on a log scale such values are roughly
intermediate with respect to our high and low contrast values.

15



Visual acuity has been shown to be proportional. to the log of
contrast both for aided viewing with NVGs (Wiley, 1989) and for
unaided viewing under photopic (Regan, 1988) and scotopic
(Blackwell, 1946) conditions. The target contrast range is
consistent with that reported for real world objects (Pollehn,
1988).

M generations. The second and third generation devices used in
our experiments were an AN/PVS-5 NVG (Figure 7) and an AN/AVS-6
Aviator Night Vision Imaging System (ANVIS) (Figure 8),
respectively. Both were tested by an aviation life support
equipment technician on a TS-3895/UV ANVIS Test Set, and met the
resolution standard for aviation (Table 7). Table 1 lists the
average display luminance of the target letters and background
for each generation and night sky condition. The values given in
Table 1 are consistent with those typically reported in the
literature, which give peak luminances of 0.9 and 2.2
footlamberts (fL) for second and third generation NVGs
respectively (Verona and Rash, 1989).

Figure 7. AN/PVS-5 night vision goggles.
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Figure 8. AN/AVS-6 Aviator Night Vision Imaging System.

Table 7.

Resolution test results.

Test score
Night
vision Low illumination High illumination
g o g g l e s ...... ... ... . .... ..

R L R L

AN/PVS-5 6/6 6/6 2/2 2/2

AN/AVS-6 6/6 6/6 2/2 2/2

17



Experimental procedures. Recent evidence suggests that impro-3r
user adjustments adversely affect VA with NVGs (Berkley, 1991).
In addition, it has been reported that dioptric blur has a
profound influence on VA with letter charts (Thorn and Schwartz,
1990). As a consequence, an investigator adjusted the objective
lenses, the eyepiece lenses, and the interpupillary distance of
the NVGs prior tu each use. Subjects were not allowed to change
these adjustments.

During the experiment, each subject was seated in a light-
tight room with his head supported by a chin rest. An
investigator controlled the experiment from an adjacent room, and
communicated with the subject by means of an intercom. A
research assistant was stationed in the light-tight room to carry
out functions which could not be remotely controlled. Testing
was done at 10 feet, but targets that were subthreshold at 10
feet were retested at 5 feet. At the latter distance, the
objective lenses were again focused by an investigator.

Thresholds were obtained binocularly, the most common method
of reporting VA for grouped data (Coren, 1987). There are minor
differences in the way thresholds are determined between Bailey
(Ferris et al., 1982) and Regan (Regan, 1988). For the sake of
uniformity, we used a single method (Bailey's) to determine
threshold regardless of chart type. In Bailey's method, crediL
is given for each letter read correctly. There was no time limit
and no reinforcement.

Results

Overview. Figures 9 and 10 summarize the data for second and
third generation NVGs, respectively. These same data appear in
tabular form in Appendix B. The data are expressed as
thresholds, with smaller values on the ordinate representing
better performance. Eight of 12 possible thresholds were
obtained with the second generation, while 10 of 12 were obtained
with the third. The missing data were the result of elevated
thresholds under degraded stimulus conditions, i.e., low night
sky radiance and low target contrast. Appendix B provides best
case values for each of the missing thresholds.

To achieve symmetrical data for statistical analysis, the
overcast starlight and low contrast conditions were deleted. The
remaining 12 thresholds (3 night sky conditions X 2 contrasts X 2
generations) were analyzed with analysis of variance with
repeated measures. Statistically significant main effects
occurred for night sky condition (df = 2/38, F = 241.2, p <
0.0001), contrast (df = 1/19, F = 259.16, and p < 0.0001), and

is
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Figure 9. Visual acuity with generation II devices.
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generation (df = 1/19, F = 134.49, p <0.0001). The sphericity
assumption, however, was violated for night sky condition.
Therefore, the p-values for night sky condition (including its
interactions with contrast and generation) were adjusted (when
necessary) using the Greenhouse-Geisser method (Grieve, 1984).

GeneratiQn specific effectg. There wez: statistically
significant interactions between generation and night sky
condition (df = 2/38, F = 54.39, p < 0.0001), and between
generation and contrast (df = 1/19, F = 40.51, p < 0.0001).
Figure 11 demonstrates that VA degrades more rapidly with
decreasing night sky irradiance with second generation NVGs than
it does with third. Figure 12 illustrates that VA degraded in a
similar way for contrast.

Contrast gspecfic effects. The interaction between contrast and
night sky condition was statistically significant (df = 2/38, F =
107.56, p < 0.0001). Figure 13 shows that VA degrades more
quickly with decreasing night sky radiance when contrast was low

220 0-0 Generation II 11C

180 0-0 Generation III- -180- 0 9 0

. 140- 7 0
E1 0 0o :

S100 T 5 0 c

C:/

C: 60 - -0 3

20 1
Full Quarter Clear Overcast

Moon Moon Starlight Starlight

Night sky condition

Figure 11. Visual acuity as a function of night sky condition
and generation of night vision goggle with high
contrast targets.
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and target contrast with generation XII
night vision goggles.
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than when contrast was high. This effect was more pronounced
with second generation NVGs than with third (df - 2/38, F
16.96, p < 0.0001) (Figures 9 and 10).

Linear and MasISIratic trends. Too few levels were present for
trend analysis of contrast and generation. However, the data for
night sky condition fit either a linear (df = 1/19, F - 308.05, p
< 0.0001) or quadratic (df = 1/19, F = 5.31, p < 0.04) model.
The slopes of the regression lines relating VA to night sky
condition are markedly steeper for second generation NVGs than
for third (df = 1/19, r = 94.81, p < 0.0001). This was
consistent with the generation specific effects described above
and plotted in Figure 11. No difference was noted for the non-
linear trend across generations (df = 1/19, F - 1.39, p > 0.25).
The regression line slopes relating VA to night sky condition
were also steeper for medium contrast than for high (df = 1/19, F
= 147.62, p < 0.0001) (see generation specific effects above and
Figure 12). Again there was no difference in the analogous non-
linear trends (df = 1/19, F = 0.08, p > 0.78).

Discussion

This study confirmed that VA with both NVG generations
declines monotonically with decreasing night sky irradiance and
with diminishing target contrast (Figures 9 and 10). In
addition, it demonstrated that, when between-generation
differences in contrast are eliminated (see methods), VA is
consistently better with third generation NVGs than it is with
second (Figures 11 and 12). However, it was learned that the
difference in VA between NVG generations widens with decreasing
night sky irradiance (Figure 11) and with decliring target
contrast (Figure 12). Furthermore, we found that VA degraded
more rapidly with decreasing night sky irradiance as target
contrast was lowered (Figure 13).

The results of this investigation agree with those of the
only published field study of VA with NVGs (Miller et al.,
1984). Miller and his colleagues reported mean third generation
VA was 20/86+19 for a high contrast target viewed under "slightly
overcast starlight." This fits between our means for clear
starlight (20/54+9) and overcast starlight (20/87±14) for a high
contrast target (Figure 11). In addition, Miller's mean second
generation VA (for the same conditions) was 20/124±54, which fits
between our clear starlight mean of 20/92+18, and our overcast
starlight mean of 20/183+48. This suggests our method of night
sky simulation produces results for both generations similar to
those obtained under actual night sky conditions, at least for a
limited range of conditions.
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In addition, our second generation data are similar to
analogous reaults from a laboratory study which used a CRT (with
neutral density filters) to generate stimuli (Wiley, 1989).
Wiley's VA means were 20/50±6 and 20/62±11 when a high contrast
target was viewed under full and quarter moons respectively,
while our means were 20/47±7 and 20/63±9 for the respective
conditions. The 2-group T-test indicated that there was no
significant difference between the means for either the full moon
(df = 28, T = 1.16, p > 0.25) or the quarter moon (df = 28, T =
0.49, p > 0.62) conditions. This suggests that second generation
NVG VA measurements obtained using a second order night sky
simulation are not much different from those obtained with a less
involved approach. This is probably because the spectral
response of second generation NVGs overlaps the spectral output
of CRTs and that of any other conceivable light source designed
for human vision.

On the other hand, the spectral response of third generation
NVGs, and especially ANVIS (with its minus blue filter), does not
necessarily overlap the spectral output of photopic light sources
(Wiley, 1989). However, incandescent lamps are among those
photopic sources whose output does overlap the sensitivity range
of third generation NVGs (RCA handbook, 1974). Incandescent
sources with spectrally flat filters (first order simulations)
have been used in third generation studies which seek to
determine the resolution limits of the NVGs themselves
(Vollmerhausen, Nash, and Gillespie, 1988), and in studies which
seek to measure human VA while the NVGs are in use (Miller et
al., 1989; Donohue-Perry, Riegler, and Hausman, 1990; Riegler,
Whiteley, Task, and Schueren, 1991). The emphasis of these two
types of studies is clearly different, but their methods and
results are not. The results of both types of studies, as well
as those of the present investigation (second order simulation)
are summarized in Figures 14 and 15, which depict data for high
(Ž90 percent) and medium (between 12-20 percent) target
contrasts, respectively. There is no obvious difference between
first and second order simulations for full and quarter moon
conditions for either level of contrast. However, at clear
starlight the results appear to disagree, e.g., there is a
statistically significant difference between the results of the
present study and those of Donohue-Perry et al. (1990) for high
(df = 24, T = 9.66, p < 0.000001) and medium (df = 24, T = 4.52,
p < 0.0002) contrast targets. Insufficient data are available at
overcast starlight to draw conclusions.
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Figure 14. Visual acuity as a function of night sky condition,
generation III laboratory data, for high contrast

targets.
-o U0

C E.
(A

201
l-ull Quarter Clear Overcast

Moon M0011 Starlight Starlight

Night sky condition

Figure 15. Visual acuity as a function of night sky condition,
generation III laboratory data, for mediumt contrast
targets.
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Qncl±Qioa~

1. The difference in VA between second and third generation NVGs
widens with:

a. Decreasing night sky irradiance (when target contrast is
constant).

b. Decreasing target contrast (when night vky irradiance is
constant).

2. For either NVG generation, VA degrades more rapidly with
decreasing night sky irradiance for targets of lower contrast
than for targets of higher contrast.

3. The night sky simulation method used in this study, which we
call a second order simulation, results in VA measurements that
are the same as those obtained:

a. Under night sky conditions in the field, regardless of
NVG generation (at least for a limited range of conditions).

b. With a first order night sky simulation method, which
uses a CRT with spectrally flat filters (at least for a limited
range of conditions).

4. It is not clear whether the night sky simulation method used
in this study results in VA measurements that are the same as
those obtained with incandescent sources and spectrally flat
filters.
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ARPpnd.±x A.

List of equipment manufacturers.

Hoffman Engineering Corporation, 20 Acosta Street, Stamford,
CT 06902.

University of California, Berkeley, School of Optometry,
Professor Ian L. Bailey, Berkeley, CA 94720.

York University, Department of Psychology, Professor Donald
Regan, 4700 Keele Street, Ontario, Canada, M3J MP3.
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A&mendix D.

Experiment data in tabular form.

Table B-i.

Visual acuity (±1 standard deviation).

Second generation night vision goggles.

Night Contrast (percent)
sky

condition High Medium Low

Full moon 20/47+7 20/98+29 20/172±32

Quarter moon 20/63+9 20/185+45 >20/250

Starlight 20/92±18 20/269+68 >20/250

Overcast 20/183±48 >20/600 >20/250

Table B-2.

Visual acuity (±1 standard deviation).

Third generation night vision goggles.

Night Contrast (percent)
sky

condition High Medium Low

Full moon 20/33+6 20/58+14 20/186+25

Quarter moon 20/40+7 20/90±30 20/191±32

Starlight 20/54+9 20/146+44 >20/250

Overcast 20/87+14 20/317+88 >20/250
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